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THE INVERSE PROBLEM AND THE PSEUDO-EMPIRICAL ORTHOGONAL FUNCTION
METHOD OF SOLUTION PART 1: THEORY; PART 2: APPLICATION

1. THEQRY
1.1  Introduction

Many schemes have been developed to solve the so-called "inverse
problem." However, it remains a fact, regardless of the scheme, that
normally the information content in a given set of measurements is
severely limited. Therefore, our recoverable knowledge of the unknown,
if deduced solely from the measurements, is also going to be severely
limited. The difference between the various inversion schemes is pri-
marily due to the additional information that the set of equations is
given. This additional information is normally in the form of “phys-
ically plausible" constraints.

The 1ist of methods is too long to repeat here [the interested
reader can be referred to Twomey,1 Deirmendjian,2 and Bottigeré], but
it follows that, in any method of solution employing one or more con-
straints, the final solution will depend to some degree on the valid-
ity of the constraint for the particular problem and, therefore, is
not completely objective.

Given a set of measurements, 95 i=1, 2, *++ m, the governing
equation for the inverse problem can normally be written as a fredholm

integral of the first kind:
b
g, = [ x,(x) F(x) ox (1)
a

where ki(x) is the ith kernel of the problem, and f(x) is the unknown.
The measurement 9; is, therefore, a dot product in the function space

th

between the i*" kernel and f(x). Therefore, the part of the solution,

f(x), that can be recovered from the measurements must lie within the

function space spanned by the kernels. Any solution or component of
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a solution which is outside this function space requires additional
information (constraints) and/or assumptions, in order to be recovered.
The presence of measurement errors and uncertainties in the mathemat-
ical model and the physical processes represented by the kernels act
to further increase the unrecoverable part of the solution.

Equation (1) can be approximated in some fashion by a discrete sum,
such that f(x) is calculated at some set of x's, and therefore may be

rewritten in a matrix form:

>~

g=Af | (2)
where 5 is an mxl vector made up of the set of measurements; K is an
mxn matrix representing the kernel and may contain weighting ractors
which depend on the quadrature formula used for converting from an

>
integral to a finite sum; and f is the unknown nxl column vector

whose elements are fi' The direct solution of the basic Eq. (2) is

Ry
or
NPT PUN R N
f = (BTE (719, (3)

when the A matrix is not square where T denotes the transposed matrix.
A1l methods of solution for Eq. (2) require the computation (directly
or indirectly) of the inverse of the matrix KE.* The instability as

a result of the inverse operation and its relation to the eigenvalues

T 5,6

and eigenvectors of the matrix A' A will be demonstrated as follows.

Let the exact equation to be solved be written as:

~r

b = Gf (4)

* ~ ~r ~ [
where b is the transposed wmeasurement vector AT§ and G is the ATA




Y ¢ v
ety

matrix obtained from Eq. (2) after premultiplication by K. if a

>
small perturbation &b is assumed in the measurements and the result- W,

-l

g ¥

>
ing perturbation 6f is estimated such that

>

E + &b = E(F + 6;), (5)

then subtracting Eq. (4) from Eq. (5) yields v

> ~ >
b = G&f )

> ~ >
§f = G "éb.

[

The matrix G is a symmetric and real matrix, so that its eigen-
values Ai are real and positive and 0 < Ay <A, eee K An. The eigen-

values of G ! are 0 < l/An < 1/>‘n_1 oo 1/A1, and the eigenvectors of
~ ~_1 <> > »>
G and G ~ are Ups Uy *o* U

) Assume now that any perturbation vector

> >
&b can be written as a linear combination of the eigenvectors Ujs i=

> >
1,2 *++ n. For the specific case for which &b = €U where € is the

ek e A

magnitude of Gg, Eq. (6) may be written as:

-*-
> ~_1 > :
sf = G Eu,i- (7) ¢
. X . ~=1 %-1? > . b
By using the eigenvalue equation for G *, G u; = (l/xi)ui yields:

> 1 > :l
Gf =T Gbo (8) "'

i ‘

2

> r

The error of magnitude |sb| is amplified by a factor /35, which can y
be very large when Ai is close to zero for a nearly singular matrix. I
+> ~_1* > > _\
Furthermore, from Eq. (4), it follows that f = G 1b, and for b = a, h:

\

> > »

where a is the magnitude of b, the minimum magnitude for f will be F
> 12 :

szb, (9) -

n 8

0

t

where An is the largest eigenvalue, A
9 R




Combining Eqs. (8) and (9) yields an estimate for the relative error:

|of | A lob]
Y RS B > ? (10)
| 7 Y

which says that the relative error in F is less than or equal to the
relative error in g times the ratio of the largest to the smallest
eigenvalue of G.

By improving the quality of the measurements and the model, the
magnitude of the error |66] = ¢ can be controlled. However, it is
important to note that the direction of GE is outside of control. The
probability always exists that some of the error vector will be in the
direction of Jl, and a very large error in the solution F will result.

If it is desired to include in the error magnification analysis the
combined effect of error in the measurements and error in the kernel
function, Twomey1 (pp. 207 - 210) can be followed to solve for the
case in which : is an error measurement vector that obeys normal addi-
tive statistics. e, = N(O,ezgiz); N represents normal statistics, and
e is a fraction error in 95 - Letting ”i(r) be the error in the kernel
ki(r), which obeys normal additive statistics, ni(r) = N[O,sziz(r)],
where P is a fraction error in ki(r) and there is no correlation between

> >
e and n. The worst case of relative error magnification can be deter-

mined if the problem is normalized such that

b b
ffz(x) dr =1, and f k].?‘(x) dx =1, i = 1,2 «++ m to be
a a

212,22
TSI Xy P et (1)
[IE12/161%] a ea)? A

10




or the best case of relative error magnification 1s expressed by:

s 12112 PP !
— + P° — . (12)

12122 2
Clel*/1a"1 A o) A,

Both Eqs. (11) and (12) give Twomey's results when P » 0 (no error in
the kernels).

The problems of more unknowns than available independent equations
and of inherent instability arise when a solution of the basic equa-
tion, Eq. (2), is attempted. It is important to note that, even when
the number of measurements equals or exceeds the number of unknowns,
due to errors, the resulting equations are not all independent. To
supply more independent equations, relationships betweer the unknown
solution points can be assumed or assumptions about other properties
of the expected solution can be made.

If no constraints are available or if those available are insuf-
ficient, no solution with finite error bounds can be found.7 The
additional assumptions (constraints) can be mathematical (weighting
functions) or physical (additional assumed physical characteristics).
In some cases, the constraints can be hidden. As an example, Smith8
required that the solution be a linear combination of the weighting

. . 9.10
functions, and Chanine™’

used linear interpolation between the
unknown solution points (temperature at different elevations) as

noted by Rodgers.7 The constraints can be explicitly stated, as did

11,12 15

Twomey , Fleming and Wark,13 Wark and F]eming,l” Herman et al.,
and others.
The applicability of the constraint to a given problem is very

important because the additional set of constraint equations serves

11
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as virtual measurements. If the proposed constraints do not properly
describe the physics of the problem, to use them would be tantamount
to adding measurements with large errors. For example, if on a par-
ticular day the aerosol size distribution was a very erratic function
and a smoothing constraint was applied, the result would be two sets
of contradictory equations. The quality and type of the constraint
applied are reflected in the solution and imake it nonobjective.

Frequently the solution, f(x), is used to calculate different prop- o
erties of f(x) [i.e., moments of f(x)] or other derived properties as .
an input for other models. Therefore, it is important to know how Y
sensitive the measurements are to these computed properties and the

standard deviation of the solution. If the measurements are not sensi-

tive to these properties, then these computed properties are not neces- X

sarily appropriate for use in modelling. Analysis of the kernels can ;

give information about types of solutions and properties of the solu-

tions to which the measurements are sensitive, as will be shown later. E
For those inverse problems for which there exists a large body of é

observed solutions [distribution functions f(x)], such as temperature

soundings, ozone vertical distributions, etc., one can make use of this

large reservoir of observed "solutions" using the method of empirical Y
orthogonal functions.'®" ' In this method, the observed information o
is put into the form of a matrix from which the eigenvectors are deter- &:
mined. From these eigenvectors, a set of orthonormal basis functions E:
may be constructed, which are used as additional information to con- :\
strain the unknown solution to be composed of a linear combination of i
these observed distributions. It is inherently assumed in this method ;
that the orthonormal basis functions form a complete set. i
r,

~

12 gz_

7]

:
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For those problems for which we do not have any reliable library
of observed "solutions," e.j., when f(x) is an aerosol size distribu-
tion, the basis functions can be constructed from a library of mathe-
matical functions. Although these mathematical functions do not
describe existing functions f(x), they can produce orthonormal basis
functions from which many types of anticipated solutions can be con-
structed. These orthonormal basis functions will be called pseudo-
empirical orthogonal functions, as their source is from a library of
mathematical functions. Inherently assumed in the method is that the
library of assumed functions can be used in linear combinations to
yield any real function which describes the unknown f(x).

The approach of expanding an unknown function as a linear combi-
nation of orthonormal basis functions can be found in many mathematical

20,21

reference books. In this work, this approach will be applied for

solving the inverse problem.

1.2 Method of Solution
It is assumed that the unknown solution function f(x) can be con-
structed from a linear sum of orthonormal basis functions ¢(x) with

coefficients a5 i =1,2 «¢¢ p,
p

Flx) =) aye(x) - (13)

i=1
The validity of this assumption will be discussed further on. The
coefficient set a, can be represented in matrix notation by a column
vector a(pxl) whose elements are a;. The basis functions ¢.(x), i =
1,2 »++ p, can be written in matrix notation as a column vector o(x),

(px1), where each element is ¢1(x) and x is a continuous variable. If

13
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x i1s discretized (x1 to xn), the basis functions can be written as a
~ >
matrix &{pxn), while f is, as before, a column vector (nxl). By using

the above matrix notation, the unknown solution can be written as:

’ ke d
f=33 (14)

Substitution of the expansion for the unknown f(x) [Eq. (13)] into the

basic Eq. (1) yields:

or in matrix notation:

§=A, ‘ (16)
where now the A matrix elements are composed of the various terms
of the integral on the right-hand side of Eq. (15), which are inner
products between the physical kernel of the problem ki(x) and the

mathematical basis functions ¢j(x), which express assumed prior

knowledge about the unknown function f(x) such that
b
A =f k; ()0, (x) dx . (17)
a

The condition number (the ratio between the largest and smallest

T

eigenvalues of A'A) is generally large and, as a result, the solution,

ol - ~ ) ~
3 = (ATA) IAT§ and f = ¢T5, is unstable. This results from the fact
that the number of unknown coefficients (ai) which are needed for the
approximation, Egs. (13) and (15), is usually much larger than the

limited number of independent measurements. As a result, it becomes

14




necessary to employ additional sets of equations in the form of "
constraints that express properties anticipated in the expected “
soluytion.

The first constraint employed here is a smoothing constraint, -
since f(x) is expected to be smooth for most low-resolution measure-

ments of 95 - A smoothing constraint will also serve as a low-pass

o

L

filter that will reject high-frequency oscillations. Mathematically,

high-frequency components usually are nearly orthogonal to the kernels

Sl
g

and are therefore undesirable because they do not contribute signifi-

»
9

s

P R L T Y,
Pl ?l:-;" .’(—4 v x [N -.' . SJ.

cantly to the measurements.
A second-order derivative of the solution with respect to x will
be used as a measure of smoothness, and the constraint applied will

be to minimize the sums of the squares of the second derivatives. In

matrix notation, the smoothing operation can be written as: bﬁ
2 5

3 f(x) < T e

—— =S % a g

3X2 \_":

and ) :::
2 . '

E] f(X) ~T &N

i _ATTNT >
3)(.2 - =a ¢S S‘b a = q2 ’ (18) :‘
; i

i -

~ ) o

where S is an operator (matrix), as derived by Twomey, which, when ;:

+ ~
appiied to f = ¢T5, yields the second derivatives at each point.

[IEREN .

Y
Letting the matrix $§TS$T = H., the second-order smoothing matrix, N
o
£q. (18) can be rewritten as: I
[ X
»T~ » M
% = 2 M (19) =3
. RS
where q, is a scalar parameter indicating the degree of smoothness of ::
o
the solution, f(x). As the numerical value of q, becomes smaller, the ;‘:
solution becomes smoother. \“’
\::
\-.
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The second constraint to be employed is the condition of non-neg-

ative solution points. Unlike the property of smoothness, which is E
present in most but not all cases, positivity is a property that must ::
be observed at all times (e.j., when f(x) is the aerosol size distri- E
bution: temperature profile, ozone amount, etc.). E
The positivity property can be formulated if a function q, is o
created such that .
a5(x5) = 0 = yiflg) g0 (20) :

where yj is the jth positive component of a suitably chosen vector to )
be described later. Inspection of Eq. (20) and the graph in Fig. 1 E
shows that the function q3(xj) results in a small magnitude for posi- i
tive f(xj) and a large magnitude for negative f(xj). The slope for ‘;
negative values of f(xj) is much steeper than is the slope for posi- ?
tive f(xj). The function q3(xj) produces a minimum (a single minimum) i;

for a positive value of f(xj) = yj/2. The constraint of minimizing

the function q3(xj) will push the :solution toward yj/z, a positive E
number since yj was clearly positive. Equation (20) can be written in j;
matrix form as: ;;
ay(x;) = ATREFS -y aTHE, (21)

where E& is a column vector (nxl) in which all the elements are zero, ;
except for one in the jth element. Equation (20) is true for any point ;Q
xj so that there are n equations represented by Eq. (20) for all points ié
X, to X ::
The Euler-Lagrange method will be employed to solve the problem $
where: N
A3 - 317 <q, . (22) M

16 2
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where qQ, is the residual sum of the errors squared between the com-

T» .
a and the data measurements

puted ; calculated from the solution F =3
5, subject to the constraints of minimizing q, (Eq. 19) and of mini-
mizing n quantities q3(xj) for the n equations represented by Eq. (21).
The inequality sign in Eq. (22) can be replaced by an equality siyn,

and the problem becomes one of holding constant the quantity q,

q, = (Aa - g) (Ra - g), (23)

subject to the constraints of minimizing q, and q3(j). The solution

for Eq. (23) and Eqgs. (19) and (21) is the vector ;, such that for

any i, 1 = 1,2 =+ p,
n

3 ) \
35: q, * v9, * j{: Y593 * 0 (2%,
j=1

where g is the smoothing Lagrange multiplier and ij 1s the jth posi-
tivity Lagrange multiplier for f(x) at x..

J
>
In matrix notation, the solution for a (Eq. 24) can be written as:

n -1 n
> T~ ~ ~r TAT ~T i  ~r
a=|FR+ H+§ JE L E. R'g + S I P 1
[ S's T Ypﬁ’aﬁ] [9 A yJ“°J] (2%)
j=l j=1
Equation (25) may be simplified if the positivity constraint is applied
equally to each solution point Xj‘ 1.6., Y . = yp for all j's. Thus,

pJ
£qQ. (25) can be rewritten as:

n -1 n
I ~ N2 T B I [P S Vi =
a = |KR Ho o+ E E.E. K'q + 1 3eE .
a [ + Ysie : Yp¢ j J¢ } [ g Yp . > $ j
J=

—~
~n
[l

Let the positivity constraint matrix Hp be:

13
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2
YR %
p 255 (27) Z
J=1 1
| > 3
and the positivity constraint vector hp(y) be: =9
0%
NI R e 2
KURDBE X% (28) 5
J=1 :,".
r_:
> 4
where the y column vector (nxl1) elements are Y50 j =1,2 ses n. ::
A
Combining Eqs. (26), (27), and (28) yields the final form of the 3
.’»
solution to the basic Eq. (2) N
> ~T~ ~ ~ J-1TT > > > g,
a=|AA+yH. +yH A'g + v.h 29 -
[ YgH Ypp] [ g Ypp(y)] (29) i
and E;{
> ~T 39
f = ¢ 5 s (30) :‘.(
‘;,'
where Yg and Yp are undetermined Lagrange muitipliers. -
Equations (29) and (30) are solved by an iterative process. It o
is assumed initially that any given x in f(x) is equally likely to 5\.
be present; therefore, a flat size distribution function will be used ©
(9
+» > > <’
as a first-guess solution for f. A first-iteration vector, y(l) = 2f, Ej
is substituted in Eq. (29), where a first-iteration vector ;(1) is cal- Eﬂ
culated. A superscript denotes the iteration number. For the next iter- ;
> > > » e
ation () is calculated from atl) through Eq. (30), and y(&) = 2¢(1) N
+ \~'
[for positive elements in f(l)] is substituted in Eq. (29) to solve for Ef,
a second iterative solution ;(2). i(
I
The process is repeated where the constraint equation, Eq. (20), is o
LA
» > .
used to force the solution F towards y/2 (all elements of y are positive) :ﬁy
A
so that any negative values for f{x) that may appear are encouraged to >
19
po
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become positive in successive iterations by the positivity constraint. !

The iteration process is stopped when all the F elements are positive ?
and the computed values of 5 from this solution agree with the measure- A
ments for each ¥; within some predetermined accuracy. §
The significance of negative eiements in the solution F should 5'
be checked by setting negative values to be zero to create a positive s
vector F and then computing two measurement vectors from both solu- E
tions. In cases where the two measurement vectors differ by less than é‘
the errors, it can be concluded that the negative elements in F are ‘r
insignificant. 5
The numerical values of the undetermined Lagrange multipliers Yg i,
and Yp are chosen for the iterative process as follows. When Eq. (29) :
is used only with the positivity constraint (YS = 0), Yp is chosen for E,
the iterative process such that Ypﬁp ¢ ATK and such that the ratio of E
the largest to the smallest eigenvalues of the matrix (KTK + ngp) is i
minimal for Yp satisfying the first condition. This latter condition EE
decreases the relative error magnification. §;
If Eq. (29) is used with both Lagranye multipliers, Y and Ypr Vs E_
and yp were chosen such that YSgS = ypﬁh in order that both constraints E,
will affect 'R in Eq. (29), and the condition number of (KTK + YSJS + ;
S ~ Y T~ »
ypHp) is minimal for YoHe + ypHp < K'R. ;
Finally, the limits [a,b] in Eq. (1) for the inversion process T
should he chosen with care. Normally they are not known accurately, &:
and their choice can seriously affect the solution vector. The upper :'
1imit [b] should normally be decreased if the iteration process cannot 2;
produce both a positive F and an agreement hetween the computed measure- E;
ments and the input measurements. :E
20 \f_
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1.3 Standard Deviation of the Solution N
Assuming that there is no error in the mathematical model and in i
the basis functions, the effect of random noise in the measurements on t
the standard deviation of the solution points will be estimated. %;
Following Frieden's?? derivation for the least-squares problem, g?
Egs. (29) and (30) are combined to give ?
f e F AT+ vfig + 177 [A6 + v 7] (31)
Let the matrix D' be i‘
0! = 3T [ATR + Yo + Ypﬁp -t (32) %
so that Eq. (31) can be written as: ;
- w3
BF = K'§ + v h (¥) (33) N
PP i
where the circumflex indicates an estimation. The error in 5 is modeled ;i
as a Gaussian additive noise such that g‘j = N(g?, ojz), where g? is the ;E
exact jth measurment and ojz is the variance about g§ and N represents ?f
normal statistics. Taking the expectation of Eq. (33) produces: E
o
5et> = ATeS + v b (9) (33A) (:-
PP L
Subtracting Eq. (33A) from Eq. (33) yields: iﬁi
5f - <b) - ATG (34) :
where J is the error measurement vector whose elements obey statistics Zq

of the form N(O,oiz). Decomposing Eq. (34) yields: Bt
~ -~ T ‘\l

(F. - <o =ZA... o

ZDU( 37T 20 Mg (35) v

J J o

In a similar way, Eq. (34) yields:

A A T ‘.
D. .. (f., - <f.>) = A, . ,u., 36 .
PILIILAEE D DU (36) %
J J' P
.P.‘
<
21 -
“
.f.
-

-

- - L] - - » . LI e ) - - » - . ™ LI Y W Y e e v
/ - LAY A AL N A A o ML
A M ) \! e ‘.. > N 4 n T n X " g P b ‘~ . ot

»!

- S e " ¥
NN < :.\f < -, -"'-\_'n
o « Bon X

[ RPN
.8 <

-
*‘ Do A2 il




AT O Caln
i -,".q"k A A RN Q'\ .’.“" )

At da A 8t Aia ke A8 A'a dtn d'acdta £%2 i'a Aiad’a ks At 1 e Sia AV Alg Ata At aia giy gin BNo 4ty gis g9y g0 4V

Multiplying Eqs. (35) and (36) and taking the expectation of the

product yields (in matrix notation):

57 - KA (37)
where F; is the covariance matrix of the expected solution F of which

-~

the elements are (rf)ij = <(<fi> - fi)(<fj> - fj)> and A is a diagonal

matrix of which the elements are the expected values of the variances

2 . . . ~a
of the measurement errors o - Solving for the covariance matrix Ie

yields:
Iy T ~ ~T -1\ T

re = Uy (oY) (38)

where the identity (D'l)T = (ﬁ'T)'1

The matrix F? may be determined from Eq. (38) with the matrix D!

was used.

determined from Eq. (32). The square root of the diagonal elements of

the matrix P; are the standard deviation of the solution points.

The standard deviations of the expected solutions F are a result
of the mapping of error from the measurement space onto the solution
space. This mapping depends on the numerical value of the Lagrange
multipliers Yg and Y (through the matrix 5'1), as well as the matrix

~T

R'R.

Qualitatively, it can be seen that, as the numerical values of

i
the standard deviations of the solution points decrease. The explana-

and Yp increase, elements of the D’1 matrix become smaller so that

tion for this behavior is the fact that the model, including the basis
functions and the constraint equations, is assumed to be correct and

unbiased. Increasing Ts and yp decreases the condition number of KTK
and thereby decreases the error magnification. However, as Yg and Yp

increase, the measurements computed from the solution will tend to

22

A A AT G T e B T L et A
p \ F3e P I R P ) LN L N R A
LU M ML O o o A A A o T L xla s, LY ¥

R

VI. .' ( 'y

1 v wy
A

At ¥ € f g

.“x‘n oy 8, Ay T Ay

LN,

- i) ~
............



AAG O
ro10, 418 N0 T U R

deviate more from the data measurements. The behavior of the standard

+
deviation of f suggests that it is better to use as large a numerical

value as possible, consistent with the condition stated in Section 1.2

for g and Yp'

1.4 Basis Functions

The basis functions are crucial to the solution process because
the solution [Eq. (30)] is a linear sum of the basis functions and
because the numerical quadrature matrix A [Eq. (17)] depends on the
form of the basis functions. Assuming a known distribution func-
tion n(x), the coefficients a for the constructed distribution f(x)

[Eq. (13)] can be obtained by using the orthonormal properties of the

basis functions
b
a; =fn(X)¢1-(X) dx (39)
a

p

f(x) (40)

"
[<Y)
-de
©
[
—
x
~—

Any solution f(x) obtained from an inversion process cannot be
closer (in a least-squares sense) to n(x) (the true solution) than the
solution constructed from Eqs. (39) and (40). The constraint equations
and the kernels can, at most, produce a coefficients set which is the
one calculated in Eq. (39), where the coefficients, a,, are computed
from the true solution, n(x).

The solution f(x) can be obtained from a set of basis functions
constructed from the kernel functions of the problem by a Gram-Schmidt

process.20 These basis functions will hereafter be referred to as
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natural basis functions because they originate directly from the prob-

lem. Another possible source for basis functions is empirical basis

functions, which will later be referred to as "pseudo"-empirical basis

functions.

< v r o 3

When using natural basis functions in addition to a smoothing con-
straint, the solution f(x) will be the smoothest solution consistent
with the measurements which may be constructed from the basis func-

tions. When empirical basis functions are used, the solution f(x)

b Yie JaJN SRR )

lies partially outside the function space of the measurements (kernels).

Therefore, the use of empirical basis functions may act as additional
information to the imeasurements. Conversely, the use of empirical basis 3
functions may eliminate many possible mathematical solutions for f(x).

However, the constraining effect of empirical basis functions can be

R AP

minimized if they are chosen in such a way that they lie in the func-
tion space of the anticipated distribution functions. Therefore, in
order to make use of empirical basis functions, some prior knowledge

about the anticipated distributions must be obtained.

e TN
s .,

1.4.1 Natural Basis Funetions

Analysis of the natural basis functions can give an insight into

LS

the inherent limitation of a solution obtained from the inversion
process solely from the measurements, when no additional information
is used. This analysis is important in order to determine what part "
of the solution f(x) and its computed properties is a result of the
inversion process and of the additional information used, and what o
part is a direct result of the measurements.
If the anticipated solutions are functions n{x), then the type .

of solutions that can be inferred from measurements calculated from

24 »
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gi(y) ==_[ki(x)n(x) dx can be computed from Eqs. (39) and (40), when
the kernels of the problem are used to compute the basis functions
[i.e., the set ¢i(x)]. When an optimal set of kernels is used [i.e.,
a set of kernel functions which have maximum linear independency
hetween them], the reconstructed functions f(x) show the parts of

n(x) to which the measurements are sensitive.

The information about f(x), such as different moments of f(x)

(e.g., total number of particles, mean radius, total surface area,

and total volume, when f(x) is an aerosol size distribution) can be
obtained by an operation of a weighting function w(x) on f(x), i.e.,
ij(x)f(x) dx. The weighting functions w(x) for the quantities listed
agove are, respectively, 1,x,x2,x3. w(x) = x will result in a mean
radius if JP f(x)dx = 1. The process of deducing the various moments
of f(x) fro; measurements can be viewed as an approximation of the

appropriate weighting function w(x) by a linear combination of the

kernels for which the measurements have been made.23 Thus, for a
general weighting function w(x):
m
W(x) SZ a k. (x) (41)
i=1
and b m
fw(x)f(x) dx = Z .95 - (42)
a i=1

The degree of approximation for w(x) in Eq. (41) will be defined as:
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where e(x) = w(x) - w'(x) and w'(x) is the approximation to w{(x) using

Eq. (41). [If the approximation of w(x) results in a big error e(x),
the corresponding moment of f{x) and the physical quantity it describes
cannot be recovered with much reliability.

An estimate of the error in deducing average quantities such as
average number density f(x), average x2, and average x> in intervals
ax can be calculated if an appropriate w(x) is chosen. For an average

quantity x" between x. and X, s w(x) will be

1

"
——t e x, < x <X
X, 1= " ="2
Jr xn dx
wix) = < N (44)
0, elsewhere.

1.4.2 FEmpirical Basis Functionms

In cases where the use of natural basis functions produces a Tess
than satisfactory result, it is appropriate to search for a set of
basis functions that will produce better results.

Given a set of functions fi(x), i=1,2 =+« N, a set of basis
functions ¢i(x), i =1,2 ««+ N can be constructed such that any of the
fi(x) functions can be obtained by using a linear combination of the

basis function set such as:

N
£(x) = Z by #5(x) - (45)
01

The basis functions ¢j(x) can be constructed from the eigenvalues and

26
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gi(y) ==-[ki(x)n(x) dx can be computed from Eqs. (39) and (40), when

the kernels of the problem are used to compute the basis functions X
[i.e., the set ¢i(x)]. When an optimal set of kernels is used [i.e., -
a set of kernel functions which have maximum linear independency :
between them], the reconstructed functions f(x) show the parts of E
n(x) to which the measurements are sensitive.

The information about f(x), such as different moments of f(x) s
(e.g., total number of particles, mean radius, total surface area,
and total volume, when f(x) is an aerosol size distribution) can be
obtained by an operation of a weighting function w(x) on f(x), i.e., by
JPw(x)f(x) dx. The weighting functions w(x) for the gquantities listed !
agove are, respectively, 1,x,x2,x3. w(x) = x will result in a mean
radius if _['f(x)dx = 1. The process of deducing the various moments

a

of f(x) from measurements can be viewed as an approximation of the

appropriate weighting function w(x) by a linear combination of the

kernels for which the measurements have been made.23 Thus, for a
i
general weighting function w(x): R
m b
w(x) =Z aiki(x) (41) ’
i=1
I
and b m It
fw(x)f(x) dx = Z a,9; - (42) .
a i=1 ;
The degree of approximation for w(x) in Eq. (41) will be defined as: N
- b q1/2 y
fez(x) dx X
\
e N
q = b ’ (43) :z
ul.wz(x) dx N
3 |
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where e(x) = w(x) - w'(x) and w'(x) is the approximation to w(x) using

o € -

Eq. (41). If the approximation of w(x) results in a big error e(x),
the corresponding moment of f{x) and the physical quantity it describes
cannot be recoverad with much reliability.

An estimate of the error in deducing average quantities such as
average number density f(x), average xz, and average x> in intervals
Ax can be calculated if an appropriate w(x) is chosen. For an average
and x

quantity x" between x w(x) will be

1 27

> e s =

0, elsewhere.

1.4.2 Fmpirical Basis Functioms
In cases where the use of natural basis functions produces a less
than satisfactory result, it is appropriate to search for a set of :
basis functions that will produce better results. 3
Given a set of functions fi(x), i =1,2 «++ N, a set of basis ]
functions ¢i(x), i =1,2 «++ N can be constructed such that any of the
fi(x) functions can be obtained hy using a linear combination of the

basis function set such as:

f0) = D by (x) (45) :

The basis functions ¢j(x) can be constructed from the eigenvalues and
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eigenvectors of the covariance matrix C (NxN) (Twomey,1 pp. 139-143)
formed from the original set of functions fi(x), such that

b

= ]’ £ (0)F;(x) dx . (46)

Cij :
qa 3

The orthonormal basis functions from the set fi(x) are
- >

0;(x) = 22T F(x) (47)

where A and Ji are the ith eigenvalue and eigenvector, respectively,
~ >

of the matrix C, and F(x) is a column vector (Nx1), the elements of
which are continuous functions fi(x), i =1,2 «+«» N. If p basis func-
tions, where p < N, are used to represent the N functions f(x) in
Eq. (45), then the overall fraction of the N functions f(x) accounted

for by the p basis functions is

p N
z AJ/Z A\ - (48)
=t /i

In principle, there are two sources for a library of functions f(x).
The first source might be from many measurements of f(x) that were col- ]
lected over the years, but this type of library is not always available.
The second source for a library model of f(x) functions can be obtained
by simulating many functions f(x) according to theoretical models.
The set of basis functions for the expansion of f(x) in Eq. (30) is .
not unique. For example, any two orthogonal unit vectors rotated in an
arbitrary angle to the x axis can describe a vector in the x-y plane.
Similarly, but in the function space, the nonuniqueness is also true

for the orthogonal empirical basis functions. .

27 ;
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The criteria for checking a proposed empirical basis function set
are: first, that they should be able to construct as many types of the
desired functions f(x) as possible; second, that their orientation will
be-such that the greatest amount of the m-dimensional function space
of the kernels ki(x), i = 1,2 «o+« m will be within the p-dimensional
function space of the basis functions ¢i(x), i = 1,2 ¢+ p; and third,
that the basis functions should be able to construct as closely as
possible a chosen deita Dirac function. A minimal spread in the con-
struction f(x) should result from using basis functions, and any uncer-
tainty about the location x of the solution number density f(x) should
be minimal.

Because the required properties of the basis functions are known,
it is possible to construct a library source from mathematical func-
tions f(x) that do not describe existing distributions f(x) but can
yield the desired basis functions. If the resulting basis functions
fulfill the criteria stated above, these basis functions can be used
for the solution of Eq. (1). The resulting basis functions from
the mathematical function library are called the "pseudo"-empirical
orthogonal functions.

For the case where f(x) is an aerosol size distribution, the
library of the source functions f(x) was chosen to include normal
distributions, spaced uniformly every 0.15 um between integration
limits [a,b] and with a standard deviation of 0.2 wm, and few

Junge-type distributions f(x) = x’(v+1)

, where the v values are
1, 2, 3, 4, and 5. The computed hasis functions were able to simu-
late many anticipated aerosol size distributions with a very good

24
accuracy.
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The orientation of the empirical basis functions relative to the
kernel functions determines the numerical quadrature matrix K. The
components of the basis functions which are nonorthogonal to the
kernels will determine to what extent measurements computed directly
from f(x) [Eq. (1)] will agree with measurements computed from the

(16) 1.

the basis functions which is orthogonal to the kernels determines the

coefficient vector a and the matrix X [Eq. The fraction of

amount of information about the unknown f(x) distribution which cannot
be obtained through the measurements.
The portion of the kernel ki(x) for measurement i which is within

the function space spanned by the p basis functions can be calculated

(49).
27
x) dx]

kiz(x) dx.

by Eq.
1/2

5[] e

=1,2 *e+m . (49)

m‘\o_

L

The portion of the basis function j which is within the function space

spanned by the kernel functions can be calculated by

[ m b 2‘1/2
> [] 07 (x) 95 (x) dx]
_|ist b ]
q; = - j=1,2 o0 p. (50)
2
] 0, (x) dx
= a -l

where pi(x), i =1,2 *++ m, are orthonormal basis functions constructed
from the kernel functions by a Gram-Schmidt process.

The approximation of f(xo) as a linear sum of the basis functions

results in some uncertainty as to the location of the point x_ in the

0
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f(xo). This uncertainty can be written as S
p
flxg & axg) = ) ae(xg) (51)
i=1

where X, is the uncertainty ir the location X0 for f(x) at Xo The
magnitude of the uncertainty AX, can be estimated by substituting a ;
very narrow function at Xq for n(x) in Eq. (39) and constructing the

approximated f(xo) (Eq.(51)]. The 1imit of a very narrow function is

£ _F 6 0 _*_°

a delta function. In numerical form, the delta function may be approx-

imated by a normal distribution with a very small standard deviation. d
Using an empirical basis function is equivalent to changing the .

kernels ki(x) to empirical kernels Bi(x). This can be seen when the

equations § = A3 [Eqs. (16), (17)] and & = (3 &) ¥ [obtained from

£q. (14)] are combined to yield: ‘

-1 ~2

§ =AY ¥ (52) p

or
.}

~

J = Bf (53) ;

where 8 = A(3 51)'1 5. If the B matrix is computed for very fine X;

intervals, the trapezoidal rule for integration is a good approxima- .
tion, and Egq. (52) can be assumed to be nearly equal to the integral

form, given by

b
g, =_[Bi(x)f(x) dr (54)
a

where Ri(x) are the rows of g.

The unknown solution f{x) is a linear combination of basis func-
tions constructed from the empirical kernel Bi(x). As a result,
similar analysis of the properties of the retrieved solution can be

performed on Bi(x), as was described for ki(x).
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1.5  Summary

A method for solving the inverse problem was derived. The method
uses a library of functions from which a set of orthogonal basis func-
tions is computed. The source of the library can be from a set of obser-
vations or a set of mathematical functions, in which case the basis
functions are pseudo-empirical orthogonal functions. It is assumed that ’
any unknown solution f(x) may be constructed from a linear sum of these
functions. The problem then becomes one of solving for the unknown coef-
ficients of the basis functions. A solution with a smoothing constraint
and/or a positivity constraint can be obtained. A solution with the pos-
itivity constraint alone can be useful when the unknown is known to be
a narrow function or an unsmooth function. Analysis of the information Y
contained in the measurements and the effect of using additional infor- y
mation is given. This type of analysis is important in order to be able

to use the solution properly. ,
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2. APPLICATION

N
2.1 Introduction s
R
Information about the aerosol size distribution is important in :f
many different areas of the atmospheric sciences,l‘3 principally due E;
to their effect on optical phenomena and radiative transfer processes. \:
These effects depend on several factors, such as wavelength of the E.
incident radiation, refractive index of the aerosol material, and size 5;
distribution of the aerosols. ?{
Given that a priori knowledge exists about the refractive index, ES?
with some minimal assumptions about the expected aerosol size distri- éz
bution, measurements of scattered radiation can be used to obtain i:
information about the aerosol size distribution under conditions of ?‘§
independent scattering (i.e., where no permanent phase relation exists ’
between the radiation scattered by two different particles) and where ;A
the scattered radiation that undergoes more than one scattering event Ss
is negligible (Z.e., an optically thin scattering vo]ume).“ EZ
In the Tast decade, many methods for inferring aerosol size dis- it,
tribution from optical remotely sensed measurements were developed. E;j
They include spectral extinction measurements,s'll aureole and forward ?;
scattering measurements,m'17 combined scattering and extinction mea- ’
surements,la’19 angular scattering measurements,20 and backscattered iv‘
mseasuurement:s.21'23 In all of the aforementioned methods, a wide diver- EN;
gence in the accuracy claimed may be observed. A critical review of ?;f
some of these methods can be found in Deirmendjian.”" EE
The aerosol size distribution inferred from solar extinction and ﬁj

solar aureole measurements represents an average size distribution for
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the whole atmospheric depth. The aerosol size distribution obtained
from backscattering measurements of a pulsed lidar system is a local

property of a scattering volume that can be as small as a few cubic

meters at a height 2.%5

The inferred aerosol size distribution
depends on the assumed refractive indices and radii limits of the
aerosols for all methods of solution, as well as the inherent assump-
tion that the particles are spherical in shape. The solution obtained
from aureole and extinction measurements is less sensitive to the

assumed refractive indices than the one fron backscattered measure-

ments. The refractive indices used for aureole and extinction tech-

o« O

niques should represent some type of average refractive index for the

-

particulates throughout the vertical extent of the aerosol column.

It has been determined that the backscattered spectral measure- ’
ments contain more information about the particle size distribution :
than do extinction, aureole, and angular scattering measurements. 2" 3
This study investigates the possibility of inferring aerosol size dis- -
tributions from simulated backscattered measurements, such as would be

27,25 The results and features of the pe

obtained by monostatic lidar.
analyses for the maximum accuracy in the inferred solution (assuming

spherical shape and known refractive indices) can set an upper limit

o TR

for accuracy on any solution inferred from spectral extinction, aureole,

and angular scattering measurements. It will be assumed that all wave-

¥y ) TJ\

lengths between 0.3 pm and 10.6 um (in intervals of 0.1 wm) are avail-

able for measurements. The aerosol is taken to be a tropospheric,
spherical rural aerosol with radii limits from 0.05 to 10.0 ym, for !
which the residence time is about a week. The wavelength dependent X

. . 8
refractive indices are taken from Kent et al.2
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Inversicns of backscattered radiation were obtained by Capps et

21 in which the solution was constructed from the basis functions

al.,
of the backscattering kernel. This method does not use any constraints
on the solution, and therefore the solution can be oscillatory and
negative, even for the very narrow radii limits that were :sed (0.001
to 1.3 wm). Zuev and Natts?? use an iterative technique to determine
the refractive indices and the size distribution function from multi-
wavelength extinction and backscattering cross-sections which are
inferred from monostatic lidar measurements. The accuracy of their
method (in the atmospheric boundary layer, z < 1 km) is stated to be
no greater than twice the error in the measurements (using ruby and
neodymium and their second harmonics as laser sources). Ben-David and
Herman?3 use an iterative technique where an iritial guess is built
into the kernel function. By successive iterations, a correction vec-
tor is calculated and a solution is constructed subject to a smoothing
constraint in tr2 solution.

In this work, the psuedo-empirical orthogonal function method?®
is used for inferring size distribution of spherical aerosols with
assumed refractive indices. The method uses empirical basis func-
tions from which the solution is constructed subject to a constraint
for non-negative solution points and additionally (optionally) to a
smoothing constraint upon the solution. The properties, limitations,
and accuracy of the method will be shown, along with examples of

inversion results for four data sets. Possible applications for the

inferred aerosol size distribution will be discussed.

2.2 The Inverse Problem ;

In a typical monostatic lidar, a pulsed lasar is transmitted in
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a narrow beam, and a receiver telescope is co-aligned to collect the

radiation scattered in the backward direction. The received lidar

response may be described in terms of the lidar equation25
R
=D ! 2 - [ [
PA(R,t) 'Ao(t) C /R BX(R)exp 2 ox(r)dr (55)
0

where PX(R,t) is the power received at time, t, from distance, R, and

P . (t) is the transmitted power, and ¢' is the instrumental calibra-

Aol
tion factor. The term BA(R) is the volume backscattering cross-
section, and OA(R) is the volune extinction coefficient, both at wave-
length A and range R. Assuming the measurements of PX(R,T) are made

at optically thin ranges, R, we may neglect the attenuation term in

Eq. (55). Then

b
P,(R,t) = CB (R) = C f K (rsm)f(r)dr = g, (56)
a
where
_ ! 2
C=C/R" x Pxo(t) .
Kx(r,m) is the particle backscattering cross-section for radius r and,

with refractive index, m (to simplify the notation, the dependence of
the kernel on the refractive index will be omitted), and f(r) is the
numher of particles of radius r per unit volume per unit interval in
r. The measured backscattered flux PX(R,t) at wavelength X will be
referred to as N to put the notation into the more usual form. If

Fq. (56) is written in numerical form, it becomes
+ ~ >
g=Af (57)

Id
where g is an mxl columnn vector whose elements are the backscattered

flux at at m wavelengths, A is an mxn mnatrix composed of the particle

w
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backscattering cross-sections for the various wavelengths and radii
intervals and also contains any numerical quadrature required in addi-
tion to the constant C, and % is the unknown nx1 column vector whose
elements are the number densities at the n discrete radii. For the

remainder of this work, we assume that the measurements, g,» are given

. X

and examine the feasibility and accuracies obtainable in inverting the
measurements to obtain the unknown f(r). In addition, we introduce a

new inversion approach through the use of pseudo-empirical orthogonal

functions to describe the unknown f(r) and also introduce a positivity

constraint which helps insure that the values of f(r) so obtained are .

not physically unreal negative numbers.

[ »

To see the difficulties of solving Eq. (56) or its numerical equiv-

alent, Eq. (57), it should be noted that the measurements g, are actu-

o % W)

ally equal to inner dot products in the function space (Hilbert space)

between the kernels kA(r) and the unknown function f(r) in Eq. (56) or
equally dot products of the row vegtors of the K matrix, Ki(j) with

>
the unknown column vector f (i.e., 9; =Z Aijfj)‘
J
The above geometrical viewpoint of Egs. (56) and (57) addresses
the inverse problem thusly: given m projections, 950 of an unknown

function (vector) f(r) on some set of m skew functions (vectors) k (r)

N
to construct the unknown function (vector) f(r). As as result of the 1

W A AN,

erratic fine structure of the kernel (Fig. 2), a large number of solu- !
tion points n must he taken so that the integral in Eq. (56) can be
evaluated. Hence, there are m equations and n unknowns where n may be

larger than m (n is usually on the order of 50, and m is on the order

CAC % .

£,

of 10).
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2.3 The Information Available in the Measurements
2.3.1 Independence of the Kermel Functions
An analysis of the kernels ki(r) of the inverse problem can give
an insight into the information available in the measurements about
the unknown aerosol size distribution. This analysis utilizes results
from the previous work by the authors.??
Recent developments in laser technology make available a wide

5 In order to examine the theoretically maximum

range of wave]engths.2
information content possible, we assume all wavelengths between 0.3 um
and 10.6 um in intervals of 0.1 um may be used.

One hundered and four wavelengths between 0.3 uym to 10.6 um were
thus selected and the backscattering cross-sections computed for each
wavelength as a function of size and refractive index of the rural
tropospheric aerosol. These functions were used as kernels ki(r),
i=1,2,-+-104, and were arranged in order of maximum independency
between them. The independency within the kernel functions was mea-
sured as the maximum orthogonality between kernel i and all the other
kernels j # i.

30,31

The interdependence between the kernels ki(r), i =1,2,°°°m,

can be demonstrated as follows. In principle and from a purely mathe-
matical point of view, two or more of the kernels are linearly depen-

dent if there is a set of coefficients a;s i =1,2,*+*m, such that

m
Z] aik.(r‘) =0 (58)

and

Za?=1
i
in order to eliminate the trivial case.
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In a real physical situation, there are uncertainties in the mea-
sured quantities or in the mathematical model. In this situation, a ;
linear combination of the kernels that results in the right-hand side g
of Eq. (58) equalling some value e, € > 0 but less than the uncertain- :
ties involved, is no better than a zero value and is equivalent to d

linear dependency between two or more of the kernels.

If it is assumed that the uncertainty in each wavelength i is €5 E
Eq. (58) can be written as: X
m
z u]k_l(r‘) + aie_i(r‘) = q (59)
i=l f
R
EE .
a; =1
T ! )
or in vector notation A
@7+ 2ha = g
e =1 3
N > ‘i
where the k vector elements are ki(r), the a vector elements are the
> .
coefficients o and the e vector elements are Ei(r) that give the =
uncertainty in the measurement g; or represent uncertainties in the f
physical model (single scattering approximation, refractive index ?.
uncertainties, and so forth), and the superscript T denotes a trans-
pose operation.
-3
The quantity to be minimized is !
al? = 3@ + HRT + 213 (60) |
subject to the constraint aa=1. d
4? N
o
(S
A\
)
r‘
;
N2 TSR RO ML 7 A O NI ST~ A D T 0 R O e S S e Sl S




If the expected value of <|q|> (where <

> denotes an averaging
process) is taken and a Gaussian additive noise for e is assumed,
such that e. = N[0, PXk%(r)] ,

i i
where N represents a normal statistic about zero mean and a variance
P?k?(r), Pi is the fraction error in ki(r) and <E-g> = 0, Eq. (60)
yields:

Jal® = JTRTa + aTha (61)

where A is a diagonal matrix whose elements are

b
_ 2,2
Aﬁ-fggmdm
a
Eq. (61) can be written symbolically as <|q2|> =q, +4,. The minimum

of 9, is the smallest eigenvalue, A in’ of the matrix C whose elements
m

are
b
Cij =/ ki(r) kj(r) dr,
a
b
J[ k?(r) dr =1 (Twomey32, p. 189)
a
and
% 2
q, 1s a, P..
2 & i
Finally, Eq. (61) yields
<Jap? = a (of C) + T o p2
q " “min )Z& % T

The maximum value of q, can be calculated from Schwarz's inequality:
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i

(if we assume all Pi = P). Hence, if AL > mP2, the m kernels are

in
independent. To ensure a signal-to-noise ratio of 10, the condition
for independence of m kernels which contain an error of magnitude P )

will be set at

_ 2 -

Anin = 10 mP”. (62) 5

The covariance matrix C was computed for various numbers of wave- Iy
lengths. The covariance matrix' eigenvalues were analyzed [Eq. (62)] =
to obtain the number of wavelengths that yield independent measurements f
with some predetermined measurement accuracy. Results are shown in ;
:

Table 1. R
r

Table 1. Number of independent wavelengths :

'

(measurements) and minimum accuracy needed 1

s

in the measurements. ‘3

hY

x i

= “w

>

Number of Wavelengths Accuracy [%] :

40 0.5 -

35 0.85

30 0.9 5
25 2.0 4

20 2.25 ¢
15 2.7 4

5 .7 N
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2.3.2 Information of Unknown Size Distribution Contained in the Kermels

Direct measurements of aerosol size distributions show that the
aerosol size distribution, n(r), can be approximately described by a

l1og normal distribution®3"%% and a power law, n(r) = cr™V size distri- !

bution., 3639 3
These distributions are recoverable from the measurcments only
if they are within the function space spanned by the kernels [i.e., <
Eq. (56) or Eq. (57)]. To examine the extent to which expected size i
distributions, n(r), lie within the function space of the kernels,
the following procedure was followed. A set of orthonormal basis
functions (referred to as "natural" basis functions in the previous
work) was constructed from the set of kernels. Expected size distri-
bution functions, n(r), were then constructed from combinations of h
the basis functions. These reconstructed distribution functions, N
f(r), were then compared to the original n(r) to determine the degree
to which the f(r) lie within the space of the kernels. .

Figures 3a-f show results of log-normal functions, n(r), and

the constructed functions, f(r), calculated by using 40 natural basis

X

functions. The parameters for the log-normal n(r) (standard variation
and mean radius) are shown in the figures.

Examination of these figures shows that, while some size dis-
tribution functions, n(r), are reproduced reasonably well by the basis
functions (i.e., Fig. 3c,d,e,f), others are very poorly reconstructed
(i.e., Figs. 4a,b,c,d, and Fig. 3a). Thus, it is evident that some
size distributions, most notably power law types (Figs. 4a-d) and
very sharply peaked and narrow log-normal types (Fig. 3a) lie prima-

rily outside of the function space of the kernels (i.e., they possess
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large components which are orthogonal to the kernels) and therefore
measurements between 0.3 and 10.6 um contain limited information as
to their form.

An estimate of error in deducing average number density in radii
interval Ar = 0.5 um can be calculated by approximating a weighting

29,

function w(r) Ea- 44 £rom the 40 kernel functions. This error

was calculated to be 80%.

2.4 Additional Information Contained in the Pseudo-Empirical
Orthogonal Functions

A brief review of the method of solution using pseudo-empirical
functions?® will be given before examining the pseudo-empirical orthog-
onal basis functions used in this work and presenting results of the
inversion process.

In the following work, basis functions constructed from a matrix
whose elements are composed of a set of mathematical functions (normal
and power law functions) are employed, as opposed to the natural basis
functions constructed from the kernels as used in the previous section.
These basis functions are referred to as pseudo-orthogonal basis func-
tions.

Assuming that the unknown solution f(r) can be constructed from

coefficients aj and basis functions ¢j(r), Eq. (56) can be written:
9; = fki(r) ? 3 ¢J-(r)dr,

or, in matrix notation: f
§ =M (63)

where A is a matrix whose elements are:

-y

Ay = fk].(r) o, (r)dr, (64)
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and a is the unknown coefficient vector from which the solution f(r)
is constructed, t.e.,

f(r) = Y a. ¢.(r) (65)
J J J

>
and g is the measurements vector.

A direct solution of Eq. (63) is almost always unstable. For the
present method, two types of constraints on the solution are employed
in order to solve Eq. (63). The first constraint is a smoothing con-
straint,“0 such that:

2°F(r.)
= min , (66)

: 2
1 al",i

as the solution is usually expected to be smooth and to filter out
artificial oscillations in the solution. The second constraint is a
"positivity" constraint, such that f(ri) > 0 for any ris as all so'u-
tion points must physically be positive.

The positivity constraint is employed in an iterative manner. An
initial first-quess distribution, y(r), that is positive for all r is

used to start the procedure. The expression

(1) (1)
g = f°(r) - y(r) f(r) (67)

(1)
where f(r) is the first iterative solution, is then minimized as the

positivity constraint. For any value of y(r), the minimum value of q
is -y(r)/4, for which f(r) = y(r)/2, a positive number. This con-
straint tends to force the solution toward y/2 for the first iteration.
The degree of forcing depends on the strength given to the constraint.
For the next iteration, ygig is set to be equal to 2 f(r), and the

process is repeated. Any negative values of f(r) which nay appear are

encouraged to become positive in successive iterations.
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Using the method of Lagrange multipliers, the final solution employ-

ing both constraints is given by: :

> ~Ma ~ > -1 2T >y
= [A'A + + y H A'g + vy h 68
a=[ v He Ypp] [A'g Ypp()’)] (68) ;
and 2
f(r) = X a;o,(r) (69)
i
or by
> _ g
F-303 (69a) )
- 5 o
where Hp and HS are constraint matrices arising from the minimization :
> > s
criteria, hp(y) is a positivity constraint vector which is a func- g
. A
tion of y, Y and Yp are the Lagrange multipliers which determine the i
strength of the smoothing and positivity constraints, and ¢ is a matrix J
whose rows are ¢i(r). T denotes a transpose operation, as before. t
The standard deviation of the solution is the square root of the
diagonal elements of the matrix f% , where
F, = 0! Rl (5-1y7 (69b) 9
and :
~ ~TenT~ > o=l J
-1 = -
D ¢ [AA + YSHS YpHp]
and A is a diagonal matrix whose elements are the expected values of
the variances of the measurements errors.
(1
The basis functions ¢j(r) can be constructed from the eigenvalues Y
{
and eigenvectors of the covariance matrix C (NxN) (Twomey,32 pp. 139- :
143) formed from the original set of functinns fi(r), such that K
L4
b .
= )
C; ffi(r) f.(r)dr (70)
a
L4
51 P
.
AN
“
PO TN - Tl ,'-_!.r_." "4’ -» al e L PR L e A ‘ \r\\' ,""'.;f;a.;.r\".r‘ '




The orthonormal basis functions from the set fi(r) are given by

AR AR AL U<

- +
o (r) = 2,72 AT F(r) (71)
where Xi and Ji are the ith eigenvalue and eigenvector, respectively, Y
~ >
of the matrix C, and F(r) is a column vector (Nxl) the elements of *

which are continuous functions fi(r), i = 1,2eeeN. | A

Figures 3 and 4 showed that the use of natural basis functions \
produces a less than satisfactory result. Therefore, it is logical
to search for a set of basis functions that will produce better
results.

The criteria for checking a proposed empirical basis function set .
are: first, that they should be able to construct as many types of
aerosol size distribution functions as possible; second, that their

orientation will be such that the greatest amount of the m-dimensional

function space of the kernels ki(r), i =1,2++em will be within the :
p-dimensional function space of the basis functions ¢i(r), i = 1,204¢p; ?
and thirdly, the basis functions should be able to closely approximate ;
; a chosen delta Dirac function, in order that a minimal spread in the 2
E construction f(r) results from using the basis functions, and any f?
| uncertainty about the location r of the so]utjon number density f(r) E
be minimal . 3
It is standard procedure to compute basis functions from a large f
library of actual, measured functions. However, in the present case, 8
since an adequate library of measured aerosol size distributions does f

not exist, we construct a "library" based upon expected forms of the
unknown distributions, i.2., the f(r) functions - hence, the name :
"pseudo" -empirical orthogonal functions. ;
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The library of the source functions f(r) was chosen to include
68 functions (Figure 5). Sixty-three functions were very narrow
normal distributions, spaced uniformly every 0.15 um between 0.2 um
and 9.5 um and with a standard deviation of 0.2 um. The remaining
5 functions were chosen to be Junge-type distributions f(r) = r'(v+1),
where the v values are 1, 2, 3, 4, and 5. All 68 functions were cal-
culated for a radius range between 0.05 um and 10 um. Although the
first 30 basis functions can account for 99% of the overall variation
of the 68 functions, the errors resuiting in the measurements computed
from the constructed Junge-type distributions and the measurements
computed from the actual Junge distributions were of several orders of
magnitude. Most of the information about Junge-type distribution is
contained in the last few basis functions. Therefore, all 68 basis
functions computed from Eq. (71) are used.

In principle, a larger set of source functions will result in a
better quality of basis functions according to the specified proper-
ties mentioned above. This source set of equations will work if the
normal distribution functions are as narrow as possible and if there
is an overlap between the functions so that the resulting basis func-
tions will be continuous functions. However, as the set of normal
source functions becomes more numerous, more basis functions are
required in order to approximate Junge-typ2 distributions and their
measurements. Hence, the dimension of the KTK matrix will be bigger
and the computation time needed for the iterative process will
increase considerably. Furthermore, the larger the set of source
functions, the smaller the smallest eigenvalues become, resulting

in poor accuracy in computing the basis functions in Eq. (71).
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Figure 5. The "pseudo"-empirical functions f(r).
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Therefore, an optimal number of functions must be determined which
is as large as possible and still allows accurate determination of
the smallest eigenvalues. Based on the factors heretofore described,
the basis functions chosen represent an optimized set.

Figure 6a-e presents results of reconstructed aerosol size dis-
tributions f(r) from various aerosol size distribution models n(r)"1
that differed from the original source functions. The reconstructed

distributions were calculated from the pseudo-empirical orthogonal

functions from the equation

P
f(r) = Z ai¢i(r) (72)
i=1
where
b
a; =/n(r)¢1.(r)dr (73)

a

The solid curves are the analytic models, n(r), and the symbols repre-

sent the reconstructed f(r). It can be seen that, in most cases, the

symbols fall on the solid curves, which is to say that f(r) = n(r).
Figure 6a represents reconstruction of various log-normal distri-

butions given by

1/2 .2,
n(r) = 1/(2n) exp[-1/2 (Iinr - In r) /In"d] (74)

which is believed to represent the size distribution function for
aerosols having soil-derived components.33 Figure 6b shows recon-

structions of various Junge-type distributions given by
n(r) = (1) (75)

which was proposed by Junge to represent continental aerosol. The
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Figure 6. Reconstruction of size distribution f(r) from aero- i

sol size distribution n(r), using the "pseudo"-empir-
ical basis functions (a) for log-normal distribution, by
(b) for power-law distribution, (c¢) for regularized

power-law distribution, (d) for modified Gamma distri- -
bution and (e) for inverse modified Gamma distribution. ,
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2 PARAMETERS FOR SIZE DISTRIBUTIONS
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Figure 6 (continued).
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numerical values for v are different from the numerical values in the
source function set (Figure 5). An inspection of Figure 6 reveals that
when n{r) changes more than 7 orders of magnitude, the constructed
distribution f(r) (symbols) deviates from n(r) (solid line). However,
measurements computed from the two distributions agree within 5%. In
cases where a significant contribution to the measurements is from
number densities with a dynamic range of more than seven orders of
magnitude, the computed measurements from f(r) will deviate signifi-
cantly from measurements computed from n(r).

In Figure 6¢c, n(r) is a regularized power law distribution given
by p,-1 P,.P
n(r) =p,/p, [(r/p,) 3 "J/[1 + (r/p,) 31" (76)
where Py through p, are constants. This distribution is similar to
the Junge-type distribution at large radii, but does not have a singu-
larity at r = 0.

In Figure 6d, n(r) is the so-called modified Gamma distribution,
given by

n(r) = p,r*Zexp(-p,r ) (77)

where the constants Py through P, determine various models of aero-
sols such as Haze H, Haze M, Haze L, and cloud C.1 to C.3 used by
Deilr‘mendjian."2 Because the Haze models (L and H) range to more than
40 orders of magnitude for the radii range 0.05-10.0 um, only the
cloud C.1 to C.3 are presented.

In Figure 6e, n(r) is the so-called inverse modified Gamma distri-
bution, given by

n(r) = pexp(-p,/r )/r 2 (78)
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which describes exponential fall-off at small radii and power law
behavior at large radii. This type of distribution can represent dry
aerosols.

The fraction of the basis functions which is orthogonal to the
backscattering kernels determines the amount of information about the
unknown aerosol size distribution which cannot be obtained through the
measurements.

The portion of the kernel ki(r) for wavelength A which is within

the function space spanned by the p basis functions can be calculated

by Eq. (79):
[P b 27"/ ]
) [[k,.(rmj(r) dr] ‘
q; = izl ab i 21,2 eeom. (79)
‘/—kiz(r) dr
! a )

The portion of the basis function j which is within the function space

spanned by the backscattering kernel functions can be calculated by

Eq. (80):
[ m b 21M2
> [j o3 (r) ¢5(r) dr]
i=] La .
qJ = b j =12 -p. (80)
2
L af%. (r) dr ,

where pi(r) = 1.2++'m are orthonormal basis functions constructed from
‘ the kernel functions.
Figure 7a shows the portion of ki(r) which is within the function

space of the "pseudo"-empirical basis functions. It can be seen that,
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on the average, no more than 10% of the kernel ki(r) is orthogonal to

the basis functions. Figure 7b shows that about 50% of the function
space of the basis functions is outside the kernel function space.
Thus, the basis functions contain most of the information within the
kernels and also add additional information about the anticipated
aerosol size distributions.

The approximation of f(ro) as a linear sum of the basis functions
results in some uncertainty as to the location of the radii r_ in the

0
number density f(ro). This uncertainty can be written as

p
f(ry + ary) = 1‘§1 a;6;(r ) (81)
where ar, is the uncertainty in the location o for the number density
at Foe The magnitude of the uncertainty Ar, can be estimated by sub-

stituting a very narrow function at r, for n(r) in Eq. (72) and con-
structing a number density function [Eq. (81)]. The limit of a very
narrow function is a delta function. In numerical form, the delta
function will be approximated by a normal distribution with a standard
deviation of 0.01 um.

The results of constructing 10 functions [Eq. (81)] from 10 delta

functions centered at various locations r_ are given in Figure 8,

0
where it is shown that the uncertainty ar, is about 0.25 wm, and the
locations r, are exactly at the Tocations of the original delta func-
tions. Figure 8a shows one of the constructed delta functions of
Figure 8.

In order to estimate the error in deducing average number density
in radii interval ar=0.5 uwm, a weighting function w(r) was constructed

from the kernels which contain the additional information from the
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pseudo-empirical functions [Bi(x)].zg' Ea. 34 1his error was calcu-
lated to be 50%. In Section 2.5, it will be shown (Fig. 9) that this
estimate is a realistic estimate, and results of inversions performed

with pseudo-empirical basis functions will be reported.

2.5 Results

Simu!ated measurements of backscattered radiation and refractive
indices were provided for 15 wavelengths (between 0.2 um and 9 um) and
for four aerosol size distributions (denoted by data sets G, H, I, and
J). (Dr. J. Bottinger, private communication) These measurements were
perturbed with various random errors which were normally distributed
with a sténdard deviation of 10%. In this section, inversions for
these four data sets will be performed along with analyses of the
inversion results.

Figures 9a-d show the results of the inversion for data sets G,
H, 1, and J. In these figures, pseudo-empirical orthogonal functions
were used to obtain two solutions for each data set. The first solu-
tion was obtained using the positivity constraint only (YS = 0). This
solution is denoted SOL.1. For the second solution (SOL.2), both the
positivity and the smoothing constraints were used. The dashed line
(no symbols) represents the true solution for each of the four data
sets. Figure 10 shows the provided simulated measurements for data G
and the computed measurements from SOL.1 and SOL.2 from Figure 9a,
all of which are a function of wavelength. The other solutions shown
in Figure 9b-d reproduced the simulated measurements equally well
and are not shown here. Figure 11 shows the iterative process used in

solving Eq. (68) for data set I. The residual error (the difference
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Figure 10. Computed measurements from inversions' solu-
tions for data G and the input measurements.
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tion points vs. iteration number during the
iteration process for inversion of data "I".
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between the simulated measurements and the computed measurements from o

the solution F) and the number of negative solution points converge (ﬁ
toward zero as the iteration number increases. The residual error is 2
considered to be zero when the computed measurements are within 10% of g:
the simulated measurements. (The simulated measurements contained 10% :E
random errors.) -
An inspection of the solutions presented in Figure 9 shows that 2;
SOL.1 differs greatly from SOL.2, but both can represent a real aerosol E
size distribution (i.e., no negative aerosols), and both reproduce the .
simulated measurements equally well. SOL.2 contains a smoothing con- §
straint on the unknown solution. An inspection of SOL.2 with reference ?
to the true solution in Figure 9 reveals the assumption of smoothness. § 
In Figure 9a, SOL.2 describes very well the true solution, which is ?:
smooth. In Figure 9b, the smoothing constraint forces SOL.2 to be :
much wider than the true solution. 1In Figure 9c, it may be noted »
that, for radii less than 1.5 um, the smoothing constraint does not ﬁ
allow SOL.2 to reproduce the narrow peak at 1.0 wm. For radii larger E
than 1.5 uwm, the true solution is nearly a straight line for which the ;
second derivative is zero. In this part of the curve, the assumption i}
of smoothness is accurate and is reflected in SOL.2. SOL.1, which was i;
obtained by assuming only that f(r) > 0, preserves the width of the f-
true solutions, as can be seen in Figures 9b-d. This type of compar- Y
ison between the inversion solution and the true solution is possible E?
only for simulated measurements. If both solutions, SOL.1 and SOL.2, k
were obtained from real measurements, both would be equally plausible. E:
The aerosol size distribution is often an input parameter in 5:
radiative transfer models and climate models and in other models for :ﬁ
i
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atmospheric physics. The optical properties which are of interest for

these models are: total scattering, absorption and extinction cross
sections, single scattering albedo. and phase function of the aerosol
size distribution. Figure 12a shows the ratio of computed optical
properties from SOL.1 and SOL.2 for data G as a function of wavelength.
From the figure, it can be seen that the difference between the com-
puted optical properties from SOL.1 and SOL.2 (in Fig. 9a) is less than
10%. Figure 12b shows the ratio of computed phase function for three )
wavelengths from SOL.1 and SOL.2 for data G. The phase functions com-
puted from SOL.1 and SOL.2 differ by less than 20%. Results of compu-
tation of ratios for the same optical properties for solutions for data
sets H, I, and J are similar to Figures 12a and 12b and are not shown.

Physical properties such as average radius, total mass, total
area, and average number density were computed for all solutions pre-
sented in Figures 9a-d. The ratio of computed physical properties from
SOL.1 and SOL.2 for each data set is shown in Figure 13. The differ-
ence between computed physical properties for SOL.1 and SOL.2 is less
than 20%. Therefore, either solution (SOL.1 or SOL.2) can be used
equally well as an input parameter for calculating integrated optical
and physical properties of the aerosol size distribution.

2.6  Summary

The pseudo-empirical orthogonal method of solution?®

was applied
for determining aerosol size distributions from backscattered measure-
ments. Two types of constraints were employed: a positivity constraint
alone and a combination of positivity and smoothing constraints. The )

positivity constraint can be useful when the aerosol size distribution

is known to be a narrow distribution or an unsmooth function. The use
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Figure 13. Ratio of physical properties computed from
SOL.1 and SOL.2 for data sets G, H, 1 and J.
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of the positivity constraint allows for a solution of Eq. (68) by an
iterative process which converges very quickly (after 40 iterations).
The basis functions constructed from the "pseudo”-empirical
functions can reproduce many types of aerosol distributions and the
resulting measurements with good accuracy. The use of these basis

functions does not overly restrict the variety of possible physical

aerosol size distribution solutions. However, the use of empirical ;
basis functions is a constraint on the solution, inasmuch as it makes

it possible to obtain aerosol size distributions from the backscatter-

ing kernels, which otherwise would not be possible. The constraints ;
(i.e., smoothing, empirical basis functions) produce a solution which E
is no longer completely objective but which reflects the assumptions i
that are built into the constraints.

The accuracy of the solution [f(r)] at a discrete value of the p
radius is about * 50%. Therefore, interpretation of features of the 3
solution for specific radii can lead to wrong conclusions. Features .
in the solution with widths smaller than 0.3 um in radius cannot be 5
resolved. The inferred aerosol size distribution solution can be used A
for calculating integrated optical and mechanical properties of the i
particulates. The quality of the solution depends on the applicability E
of the constraints for the given problem. However, the inverse problem y
cannot be solved without using some constraints. :

1f no constraints are used and if the problems of instability in E
the inverse process are ignored, the types of solutions and the infor- ;
mation content which can be obtained from the backscattered measure- Ei
ments will be apparent in the analysis of the natural basis function of .
the kernels. The backscattering kernels contain more information about ?‘
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aerosol size distribution than do most other optical kernels. However,
even if 40 optimal kernels with an accuracy of 0.5% are used for the
inversion process, solutions such as Junge-type distributions and log-
normal distributions, which are known to be present in the atmosphere
cannot be obtained. The error in inferring size distributions at dis-
crete radii is about * 80%.

The volume backscattering cross-sections (to be used as the measure-
ment vector 5) can be inferred from the solution to the lidar equation
with an accuracy of no better than 10-15%."3 In cases where the lidar
measurements are restricted to relatively short ranges, volume back-
scattering cross-sections can be inferred with much better accuracy.
However, the solution, f(r), continues to be mathematically and phys-
ically non-unique. The physical non-uniqueness is caused by the uncer-
tainties about particulate refractive indices and particle shapes. Dif-
ferent combinations of imaginary refractive indices, possible particle
shapes and orientations, and various breadths of derosol size distribu-
tions can all produce similar backscattering measurements. The result-
ing aerosol size distribution solution is, therefore, a plausible but
non-unique solution for the inversion of multi-wavelength backscattered
radiation, or any other type of optical measurements.

In this work, the measurements used contained 10% random error, a
magnitude of error typical of atmospheric measurements. This error is,
of course, reflected in the results (Z.e., 20% deviation in properties
calculated from SOL.1 and SOL.2). It may be noted that the deviation
between the derived solutions and the true¢ salution can be much less in
a laboratory experiment where the accuracy “n the measurements can be
improved and the refractive index and the sphericity of the particles

can be controlled.
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